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ABSTRACT:  New mathematical models are formulated and 
analytical solutions are presented for the diffusional release of a 
solute from both non-erodible and biodegradable multi-layered slab 
matrices in which the initial drug loading c0 is greater than the 
solubility limit cs. A Stefan problem with moving boundaries results 
from this formulation. An inward moving diffusional front 
separates the reservoir (unextracted region) containing the 
undissolved drug from the partially extracted region. The 
cumulative mass released is determined as a function of time.  The 
ultimate goal of such an investigation is to provide a reliable design 
tool for the fabrication of specialized implantable capsule/drug 
combinations to deliver pre-specified and reproducible dosages over 
a wide spectrum of conditions and required durations of therapeutic 
treatment.  Such a mathematical/computational tool may also prove 
effective in the prediction of  suitable dosages for other drugs of 
differing chemical or molecular properties without additional 
elaborate animal testing. 

 
 

INTRODUCTION 
 

 Controlled-release drug delivery is a subject of keen interest world-wide at this time.  
National and international pharmaceutical concerns and biomedical device developers 
are actively interested in exploiting this rapidly evolving and potentially lucrative 
market.  Some of the many state-of-the-art applications may conceivable include: 
• sustained release of estrogen and progesterone for menopausal women 
• programmed release of antibiotics for patients recovering from surgical repair of 

bone fractures and/or installation of articular prostheses 
• encapsulation of ovarian cells which themselves may continue to produce estrogen 
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• slow release of contraceptive chemicals for both men and women, particularly in 
third-world countries where the discipline of taking daily doses may be lacking 

• drug delivery to targeted organs: e.g.  slow release of insulin for diabetics 
• encapsulation of pancreatic cells which may themselves trigger the natural 

production of insulin on a long term self-sustainable basis for diabetic patients. 
  
 Recent technical advances now permit one to control the rate of drug delivery.  The 
required therapeutic levels may thus be maintained over long periods of months and 
years through implanted rate-controlled drug release capsules.  Two such novel drug 
delivery systems currently employed are implantable polymeric and ceramic erodible 
monoliths.   
 Mathematical models developed over the past 35 years for controlled-release have 
recently been reviewed by Collins1.  A simple practical model is presented here for the 
diffusional release of a solute from a biodegradable slab matrix in which the initial drug 
loading c0 is greater than the solubility limit cs. An inward moving diffusional front 
separates the reservoir (unextracted region) containing the undissolved drug from the 
partially extracted region.  This front is followed by an inward propagating erosion front. 
The positions of these fronts are not known a priori.  The mathematical formulation of 
such moving boundary problems (Stefan problem) has wide application to heat transfer 
with melting phase transitions and diffusion-controlled growth of particles, in addition to 
our topic of controlled-release drug delivery. 
 Additional applications of an industrial, agricultural or environmental nature, 
involving the diffusional release of a dispersed or dissolved solute from a polymeric 
monolith in which a pre-programmed dose-time schedule is necessary, further extend the 
interest in this problem to international levels.  Examples of such applications may 
include the removal of solvent from polymer solutions during the dry spinning of fibres 
(Vrentas et al.2), photoresist technology and microlithography (Thompson et al.3) 
diffusional release of pollutants and additives from polymers into the environment 
(Wang et al.4) and controlled release of agricultural chemicals (Neogi & Allan5). 
 The rate-limiting property of the controlled drug delivery system resides in the 
design properties of the implanted drug delivery device itself, and is not necessarily 
dependent upon the physiology (e.g. the diffusion of the drug across biological 
membranes) of the subject.   Drug release kinetics may depend on a number of intrinsic 
properties of the drug delivery implant: drug solubility, molecular weight and partition 
coefficient, matrix swelling, osmotic pressures, ion exchange, local electromagnetic 
force fields, etc.  In what follows, we will focus on two specific properties of the drug 
delivery system: drug diffusion and matrix erosion.  By the term erosion, we mean to 
denote the process by which material which is intrinsically insoluble in water can be 
converted into one that is water-soluble.  In a pendant chain system for example, one 
may imagine a drug which is covalently bound to insoluble molecules and is then 
released by scission of its bonds either by water or by enzymatic action6,7.  As the surface 
of the matrix is exposed to the surrounding extracellular fluids, its structure erodes and 
the drug impregnated within its walls and pores escapes. 
 

MODEL DEVELOPMENT 
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For simplicity and without loss of generality, a constant erosion velocity is chosen1, in 
the form  ds/dt = - B, such that the position of the erosion front is given by the linear 
relation    
  
                                                               s = s0  − Bt                                               (1) 
 
There would be no problem in principle in replacing the right-hand side of Eq. 1 with a 
more generalized form such as a polynomial in t.   The distribution of drug concentration 
c(x,t) within the matrix at any time t and position x is governed by Fick’s second law8:  
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where the flux is Dgrad c from Fick’s first law and D is the diffusion coefficient for the 
drug contained within the pores of the matrix.  In general, the matrix may be anisotropic 
and D will depend on position within the matrix and on time, due to possible spatial and 
temporal variations, respectively, in  porosity, solubility, etc. In some instances, the 
diffusion coefficient D may also be concentration-dependent.  However, for the purposes 
of this preliminary model, we will consider a homogeneous isotropic slab matrix with 
finite thickness x = s0 and diffusion coefficient D = D, uniform within the monolithic 
matrix.  Furthermore, we will treat the slab as semi-infinite, so that we may ignore 
variations in the y and z directions.  Swelling of the polymer will not be considered. 
 Then, the three-dimensional unsteady diffusion Eq. (2) simply reduces to 
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with the following initial and boundary conditions, respectively: 

At  t = 0       c(x, 0) = c0        set at the initial drug loading concentration 
At x = u(t)    c(u, t)  = cs        set at the solubility limit behind the diffusion front 
At x = s(t)    c(s, t)  =  0      representing a perfect sink at the exposed erosion front 
surface 
  
 Were the matrix non-erodible, this initial and boundary value problem could be 
solved analytically in terms of transcendental functions (error functions) for the simple 
one-dimensional geometry of the idealized slab to yield the drug concentration 
distribution c(x,t) in the region  u < x < s between the diffusion front and the eroding 
outer surface of the slab.  However, the resulting expressions for the eroding matrix will 
be difficult to integrate analytically for the subsequent determination of the position of 
the moving diffusion front.  Therefore, a simpler preliminary solution for the release of 
drug from the matrix will be obtained by applying a straightforward mass balance across 
the diffusion front.   The mass flux across the diffusion front is given as 
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 The mass balance Eq. (4) now yields the velocity of the diffusion front in 
dimensionless form as    
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and the corresponding expression for the position of the erosion front from relation (1) is 
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D

To= −   = 1 -  βT  (7) 

 

 
 
FIGURE 1.  Schematic of slab matrix 
 

 We model a moving boundary problem.  
The outer surface of the matrix is 
considered to erode and to move inward at 
the same time as a diffusion front, starting 
at the exposed surface of the matrix, also 
moves inward towards the interior of the 
slab of initial thickness s0, as shown here.  
In what we follows, we will adopt the 
general premises9,10 that:   
a) a perfect sink exists just outside the 
matrix, implying that drug is immediately 
removed from the region external to the 
matrix as soon as it arrives there, and  
b) the drug concentration immediately 
behind the inward-moving diffusion front is 
fixed at the solubility limit cs everywhere 
for all time. We denote the drug 
concentration as c(x,t) within the matrix, 
the thickness of the eroding slab at time t as  
x = s(t), the position of the diffusion front 
as x=u(t) and as c = c0 the initial uniform 
drug loading concentration within the 
matrix. 

 

Through a simple change in variables, setting  (U -1) + βT = V, expression (6) becomes 
 

                                                         
dV
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which may then be integrated directly to yield an implicit algebraic relation for the 
position U(T) of the diffusion front in the form 

                                                  W ln W T2− +





=α α
α

β   (9a) 

 
where W(T) = βV = β (U - 1 + βT).  The solution (9a) satisfies the boundary condition 
W(0) = 0, equivalent to U(0) = 1.   It yields an expression for the position of the 
diffusion front as a function of time in the dimensionless form 

                                                       U =  
W T)(

β
 + 1 - βT                                       (9b) 

 
from which we can determine the time T1 at which the diffusion front reaches the left 
boundary of the slab at X = 0 as 
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CUMULATIVE MASS RELEASED 
 

 The amount of drug released per unit of exposed area of slab matrix at any time t is 
simply the difference between the original mass/unit area of drug in u < x <s, that is  
c0(s0-u), and the amount remaining at time t, so that the resulting mass of drug released at 
the exposed surface of the slab can be expressed as 
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where c(x,t) is the concentration distribution in the region u < x < s which is given by  
Eq. (5).  The amount of drug released from the slab at any time t may then be expressed 
as 
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which becomes in dimensionless variables 
 

                                                M(T) (1 U)
S U
2C0

= − −
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1
2 0

− −βT U
C

  (12) 

                                                              
 This expression (12) for the time course of cumulative drug release may be evaluated 
directly by substituting the corresponding expressions for S(T) and U(T) from equations 
(7) and (9b) respectively.  The resulting mass release M(T) implicitly incorporates the 
design variables B, s0, c0, cs, D, which may be optimized to produce a pre-specified 
therapeutic release rate of the drug into the body over a given period of time.    
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LIFETIME OF THE DRUG DELIVERY DEVICE 
 
 When the leftward progressing diffusion front reaches the edge X = 0 of the slab,   
U → 0 (Fig. 1), not all the drug initially contained in the matrix is yet depleted.  We will 
compute the time required for the remaining drug to be released.   
 But first, let us estimate the time needed for U → 0.  Eq. (9a) may be plotted and the 
implicit relation for W = W(T) can be determined graphically to yield, using Eq. (9c), the 
time at which U = 0.  For purposes of illustration only, we have arbitrarily taken C0 = 2,  
B = 1, D = 1,  which gives a value of  T1 = T U=0 = 0.368 for the dimensionless time at 
which the diffusion front reaches X = 0. 
 It now remains to compute the time required for all the drug to be released from the 
slab matrix during the period TU=0 < T < Tf , where Tf is the lifetime of the device or the 
time for all the drug to be released from the slab matrix into the body.  In the absence of 
the diffusion front which has penetrated completely through the thickness of the slab at T 
= TU=0, and maintaining the linear distribution of concentration with distance in the 
interval  0 < X < S in the form 

                                             C(X,T) = Ca 1−�
�
�

�
�
�

X
S

 (13) 

 
where C = Cs at X = 0  for T ≤  TU=0  and C = Ca  at X = 0  for T > TU=0.   It is noted 
that the concentration Ca  at X = 0 will decrease over time from its value of  Cs at TU=0  
to zero at Tf, the time at which all the drug has been released from the slab.  During this 
process, the erosion front at X = S continues to progress leftward towards X = 0.  
 The amount of drug remaining in the matrix at any time T > TU=0 is given by the area 
under the curve (Fig. 2) as  

                                                                  1 − M (T) = 
1
2

Ca S (14) 

The rate
dM
dT

of mass release due to diffusion is then determined by Fick’s first law as 
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Using Eqs. (13) and (14),         
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Substituting for S from the dimensionless equivalent of Eq. (1) and framing in 
dimensionless variables, we obtain a single first-order differential equation for the 
concentration Ca at X = 0 as a function of time T in the form 
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which is readily integrated to yield an expression for the drug concentration at X = 0 
as  
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FIGURE 2.  Approximated linear distribution of concentration C(X,T) for  T > TU=0 
 
 
 In integrating Eq. (17) to obtain Eq. (18), we used the boundary condition Ca (T1) = 
1, where T1 is given by Eq. (9c). 
 The second phase of mass M' (T) released during the interval Tf > T > TU=0  is 
simply given by  

                                               M' (T) =  [ ]1
2

 C S   C Ss U 0 a
=

−  (19) 

Note that as S → 0 , M' → 
1
2

CsSU=0 , which was the initial amount of drug present at 

TU=0.  That is, all the drug is released by the time the erosion front U(T) approaches 
X=0.  The time Tf  required for the release of all the mass in the slab can now be 
computed from Eq. (18) with Ca (Tf) = 0 as                                                       

                                                       Tf   = 
1

0β
= D

Bs
                                                                      (20) 
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Note from Eq. (18) that as T → Tf  =
1
β

 ,  Ca (Tf) → 0, because the exponential numerator 

decays to zero more quickly than does the linear denominator.  Note also from Eq. (7) 

that the slab is fully eroded  (S = 0) at T =  Tf  =
1
β

. The lifetime of the device can then be 

defined as the total time Tf  required for release of all the original drug loading. 
TIME TO ACHIEVE STEADY STATE MASS RELEASE 

 

As the velocity dU
dT

of the diffusion front decreases with time and approaches the 

velocity dS
dT

 of the erosion front, the distance (U-S) separating the two fronts will 

reach a constant value and a steady state release rate will be established. By setting the 

velocity dU
dT

of the diffusion front equal to the velocity dS
dT

of the erosion front in Eqs. 

(6) and (7) of our one-layer eroding, we obtain 
 

                                        dS
dT

 =  − β   =   
dU
dT (U 1) T

=
− +

α
β

       (21) 

                                
or                                                       (U − 1) + βTss  =  − α / β (22) 
 
Using Eqs. (7) and (9b), we find that steady state conditions defined by Eqs. 21 and 22 
are achieved at time Tss such that  
 

                     U − S =  
W Tss( )

β
 =  (U − 1)  + βTss   =  α / β = constant (23) 

or when W(Tss) = − α.  From Eq. (9a), it appears that a singularity exists at W = − α.  
This would indicate that the time to achieve a true steady state is long.  However, one 
can estimate the time required to approach that steady state, within say 95% or 99%.   
Accordingly, we take W = − α + ε, where ε <<1, which leads to an expression for the 
time Tss to approach a condition of steady state release of drug from the slab.  From Eq. 
(9a) we can estimate the time Tss(ε) to approach to within ε this steady state drug release 
rate as 
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NUMERICAL SOLUTIONS FOR THE EXACT ONE-LAYER SLAB MODEL 

 
 The linearized concentration distributions are valid under conditions of pseudo-
stationarity (as defined by Higuchi9,10); that is, when the velocity of the diffusion front is 
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not too large as to alter concentration distributions too abruptly.  For values of α and β 
outside the pseudo-stationary range, the diffusion front progresses more rapidly through 
the matrix medium and the pseudo-stationary approximation upon which the linearized 
concentration distributions were based may no longer be valid.   We have shown that the 
solutions using linear concentration distributions are accurate to within a few percent of 
our exact numerically obtained solutions for a wide range of the dimensionless 
parameters α and β, where α is the ratio between the solubility limit concentration of the 
drug behind the diffusion front and the initial loading concentration of the drug in the 
matrix ahead of the diffusion front, and  the dimensionless parameter β is the ratio of the 
erosion front velocity times the initial thickness of the slab divided by diffusion 
coefficient.  The exact numerical results were obtained by a finite-difference 
computational solution of the governing equations with given initial and boundary 
conditions. 
 Thirty-one cases were computed with the following parameter values: Set 1: Three 
values of β = 0.05; .08; 0.10 with five values of α =  0.08; .10; 0.12; 0.18 and 0.20 (15 
possible combinations) and Set 2: Four values of β = 0.1; 0.5; 1.0 and 5.0 combined with 
four values of α= 0.5; 1.0; 2.0 and 10.0.  Those results will be analyzed in detail in a 
separate paper.  Typical results are shown in Fig. 3 below for one such set of 
computations corresponding to the parameter values: α = 0.5 and β = 0.1.  In this range 
of practical interest, the agreement of the linear approximation with the exact numerical 
solution for the position and velocity of the diffusion front and the resulting cumulative 
mass release as a function of time is seen to be very adequate.  The cumulative mass 
curves begin gradually to diverge for α > 0.5. 
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FIGURE 3a.    Position U of the moving diffusion front.  Comparison of exact 
numerical solutions with approximate analytical solutions.   
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FIGURE 3b. Velocity dU/dT of the moving diffusion front.  Comparison of  exact 
numerical solutions with approximate analytical solutions 
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FIGURE 3c.   Cumulative mass released.  Comparison of exact numerical solutions with 
approximate analytical solutions. 

 
 

CONCLUSIONS 
 
 
 By adjusting several design parameters, one may control the cumulative mass release 
process in a predictable manner. For example, by incorporating the desired 
macromolecular drug into the casting of a polymeric matrix, “winding tortuous” pores 
are created which condition the speed of the diffusion process through a corresponding 
alteration in the effective permeability of the cast drug-impregnated matrix11.  By coating 
the matrix with an impermeable film or membrane, one can slow down the rate of drug 
release until bioerosion occurs.   One may also increase the diffusion rate by raising the 
ratio of drug loading to solubility limit co/cs. 
 Many of these considerations, including the shape factor and matrix swelling, can be 
incorporated into further refined versions of the above models which may then serve as a 
valuable framework for the design of experimental protocols to test and evaluate the 
sensitivity of such factors on the cumulative mass release of drug into the body as a 
function of time. Currently, time-consuming trial-and-error methods are employed in the 
design of such implants.  Using the present approach, an efficient computationally aided 
tool can be created to design the desired implant in order to release the clinically 
prescribed dose-time program for specific therapeutic applications. 
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